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Abstract-The cracking and decohesion processes that may accompany a residually stressed thin
film on a substrate have been investigated. Attention is focused on an interfacial edge crack, loaded
by a linear variation of residual stress across the thickness of the film. The interfacial stress intensity
factor and the non-singular T-stresses at the interfacial crack tip are evaluated using the finite
element method, and the role of the T-stresses and the interfacial phase angle in influencing the
selection ofcrack path is discussed. The results are used to predict the distributions of residual stress
for which kinking switches from the substrate to the film.

1. INTRODUCTION

Decohesion of residually stressed thin films is of current concern because of the extensive
use of these materials in integrated circuits, semiconductors and in magnetic disks. Residual
stresses in thin films arise either from the deposition process (intrinsic stress), or from the
difference in thermal expansion between the film and the substrate (thermal residual stress).
In general, the residual stress is not uniform across the thickness of the film; a stress
gradient exists in the film. For example, a stress difference between the inner and outer
surfaces of the film, having the same order of magnitude as the mean stress in the film, has
been reported for a chromium film on a glass substrate (Hu et al., 1988).

In general, cracking and decohesion processes in film/substrate systems depend upon
the sign and magnitude of the residual stress in the film, stress gradient in the film, relative
elastic properties of the film and the substrate, and upon the relative fracture resistance
of the film, substrate and of the film/substrate interface. Despite the recent progress in
understanding the mechanics of failure in residually stressed thin film/substrate systems,
the quantitative sensitivity of the initial stages of the decohesion process to the above
parameters is mostly unknown.

Various cracking patterns in film/substrate systems have been observed and analysed
(Hutchinson and Suo, 1992). The operative failure mode depends strongly upon the sign and
distribution of the residual stress in the film. One important failure mode for film/substrate
systems is the propagation of an interfacial crack from an edge defect, as shown in Fig. I.
Such decohesion may lead to the spalling of the film or to cracking within the substrate.
Interfacial edge defects are often short and arise as a result ofpoor bonding between the film
and the substrate during manufacture or as a result ofphysical damage to the film/substrate
system.

1.1. Statement of the problem
In this paper we analyse, by the finite element method, the early stages of growth of

an interfacial edge crack between a film of thickness h and a substrate of thickness H, as
defined in Fig. 2(a). For computational simplicity we assume that a crack oflength t exists
at each edge of the bimaterial of width 2L [see Fig. 2(a)]. The film is subjected to a tensile
residual stress field which varies linearly with depth through the film from a value (1"2 at the
top of the film to a value (1"1 at the bottom of the film. For the case t « L, the solution to
the above problem coincides with that for a single edge crack oflength t, loaded by a linear
distribution of normal traction at the edge of the film.
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Fig. 1. An interfacial edge crack between a thin film and a substrate.

It is now shown by an Eshelby "cut and paste" procedure that the stress field in the
cracked body due to a linear distribution of tensile residual stress in the film [Fig. 2(a)] is
equivalent to the sum of:

(i) a linearly varying tensile stress in the film and a stress-free substrate [Fig. 2(b)];
(ii) the stress field in the cracked body due to a compressive normal traction at the

edge of the film [Fig. 2(c)].

We start by assuming that the film and substrate are separated from each other (the "cut"
operation) and the substrate is stress free. The film is assumed to be subjected to tensile
"transformation stresses" axx which vary linearly with depth, as shown in Fig. 2(b). These
transformation stresses may be taken to arise from differential thermal contraction and
from the deposition process itself ("intrinsic stresses"); imagine that the edges of the film
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Fig. 2. The thin film/substrate geometry.
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are pulled by external edge tractions in order to preserve the tensile stress distribution uxx

in the film. Next, the film is placed on the substrate and bonded to it (the "paste" operation).
The transformation stresses Uxx at the edge of the film are then relaxed by applying
compressive tractions - uxx to the edge of the film. The change in stress due to this relaxation
process is given by the solution to the problem of edge loading of the cracked bimaterial,
as shown in Fig. 2(c). Finally, addition of the stress fields shown in Figs 2(b) and 2(c) gives
the stress field in a cracked bimaterial due to a tensile residual stress field, as shown in Fig.
2(a). Note that the interfacial stress intensity factor at the tip of the cracks in Fig. 2(a) is
the same as that shown in Fig. 2(c), since the loading in Fig. 2(b) does not give rise to a
singular stress field. Finite element calculations are given later in the paper for the boundary
value problem shown in Fig. 2(c). Results for the residual stress problem of Fig. 2(a) follow
directly from the above superposition argument.

For the edge loading problem of Fig. 2(c), the interfacial stress intensity factor and the
strain energy release rate are evaluated as a function of the interfacial crack length t, stress
gradient in the film, the relative film to substrate thickness, and the relative elastic properties
of substrate and film. Implications for stable and unstable interfacial crack growth under
fixed residual stress are discussed. The in-plane non-singular T-stress at the tip of the
interfacial crack is calculated, and its role is evaluated in influencing kinking ofan interfacial
crack into the film or substrate.

2. REVIEW OF KINKING OF AN INTERFACIAL CRACK OUT OF THE INTERFACE

We shall examine whether kinking of an interfacial edge crack between a thin film and
a substrate is expected. Before presenting the results we shall summarise the elastic theory
of kinking ofan interfacial crack, and the role played by the T-stress in influencing kinking.
The theory draws heavily upon the work of He and Hutchinson (1989) and He et al. (1991).

Consider an interfacial plane strain crack between two isotropic elastic solids labelled
I and 2, as shown in Fig. 1. Here we refer to the film as material 1 and to the substrate as
material 2. The two elastic mismatch parameters of Dundurs (1969) which govern plane
strain problems are

£1-£2
at: = --=----::;-

£1+£2

P-!(1- 2v2)/J.t2-(1- 2V t)/J.t1
- 2 (l-v2)/J.t2+(I-vt)/J.t1 '

(1 a)

(1 b)

where the subscripts refer to materials 1 and 2; E, J.t and v denote Young's modulus, shear
modulus and Poisson's ratio, respectively. The overbar on the E designates the plane strain
value, £ = E/(I-v2

). The material parameter at: is positive when the substrate (material 2)
is more compliant than the film (material 1), and is negative when the substrate is stiffer
than the film. Both at: and pvanish when the elastic properties of the film and the substrate
are identical. The (at:, P) values for typical material combinations are concentrated along the
P= 0 and P= at:/4lines in at:-P space (Suga et al., 1988). Note that P= at:/4 corresponds to
VI = V2 = t· In the current paper we restrict our discussion to material combinations with
P= 0 and P= at:/4.

In general, an interfacial crack between two dissimilar isotropic elastic solids suffers a
singular stress field characterised by the complex interfacial stress intensity factor
K = K1+iK2, where i == .J=l. In order to define Kwe introduce the Cartesian co-ordinates
(x, y) and polar co-ordinates (r, lJ) as shown in Fig. 1. Then K is defined such that, at a
distance r directly ahead of the crack tip, the normal stress Uyy and shear stress u xy com­
ponents are given by

u +iu = _1_Kr-<1/2)+ie
yy xy $

where the oscillatory index e depends only upon Pvia

(2)
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Fig. 3. Crack kinking out of the interface between a thin film and a substrate.

1 (l-P)
B = 2n In 1+P . (3)

It is clear from eqn (2) that for B 1= °the stress components oscillate as the crack tip is
approached. This complicates the usual definition of mode mix at the crack tip. A rational
approach suggested by Rice (1988) is to define the mode mix on the basis of the ratio (Jxyj(Jyy

at a fixed distance t ahead of the crack tip. Accordingly, the phase angle ~ is introduced
where

tan~ = ((Jx
y

) = Im(K~?
(Jyy r = ( Re (Kt18

)

(4)

(For a homogeneous solid IX = P= B = 0, and K 1 and K2 can be interpreted as the classical
mode I and II stress intensity factors, respectively.)

The energy release rate for advance of the interfacial crack GI is

(5)

where E* == (l +1X)j(l-P2)E2• For propagation of a crack along an interface the energy
release rate GI must attain the interfacial toughness rio In general r I is observed to be a
strong function of the phase angle ~. The length scale t chosen in the definition (4) of ~ is
somewhat arbitrary. A physically sound strategy is to fix t at a characteristic "material
length scale" ahead of the crack tip which controls the interfacial toughness; the idea is
that the toughness r I depends upon the ratio of shear stress (Jxy to normal stress (Jyy at some
relevant distance t ahead of the crack tip. Thus r I is a unique function of~, where ~ is
defined in eqn (4). As discussed by Rice (1988), the particular value taken for t usually has
a negligible effect on the value of the phase angle ~ for realistic values of B. Indeed for the
case P= B = 0, the phase angle ~ is independent of the particular choice of t, as discussed
by Hutchinson and Suo (1992).

The next higher order term in the series expansion of the crack tip stress field is given
by in-plane direct stresses parallel to the crack plane, as sketched in Fig. 3. These stresses
are of magnitude T1 in material 1 and T2 in material 2, and are referred to as the "T­
stresses." Since the strain component Bxx is the same on both sides of the interface, the T­
stresses are in a fixed ratio given by

(6)

The magnitudes of the interfacial stress intensity factor K and the T-stresses are linear in
the remote load, and also depend upon the detailed geometry of the interfacial crack
problem in hand.

A pre-existing interfacial edge crack may propagate along the interface or it may kink
into material 1above the interface or into material 2 below the interface. Continued growth
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along the interface is preferred when the toughness of the interface is much lower than that
of the two solids. Note that the T-stresses (T1 in material 1 and T2 in material 2) have no
influence upon G1 for continued interfacial crack growth. When the interface is tougher
than either solid, or when the interfacial stress intensity factor has a significant mode II
component, the interfacial crack may kink into either of the adjacent materials. He and
Hutchinson (1989) and He et al. (1991) have developed a precise criterion for the onset of
kinking. In their analysis they assume, without loss of generality, that a kink-like flaw of
length s exists in material 2 at an angle OJ to the interface, as shown in Fig. 3. The putative
length s of the kinked crack is taken to be very small compared with all other geometric
length scales including the length t of the parent interfacial crack.

Now define a phase angle of loading at the tip of the parent interfacial crack 1[1 by

- [1m (Ks
i£)] A (s)IjJ = arctan . = IjJ +dn "t .

Re (Ks")
(7)

The phase angle 1[1 is based on the length scale s, and gives the ratio of shear stress U xy to
normal stress Uyy at a distance s directly ahead of the interfacial crack tip,
1[1 = arctan(uxy/uyy)r=s' Kinking of the interfacial crack into material 2 (the substrate) is
governed by the criterion (He and Hutchinson, 1989)

(8)

where 11(1[1) is the toughness of the interface at a phase angle 1[1 defined in (7), and Is is the
mode I toughness of material 2 containing the kink. G1is the strain energy release rate for
continued growth of the interfacial crack, and GF is the maximum strain energy release
rate for the kinked crack over the full range of OJ > O. The energy criterion (8) is based on
the hypothesis that kinking occurs along a direction OJ such that the strain energy release
rate at the tip of the kink is maximised. The ratio Gl/G~axdepends upon the elastic mismatch
parameters (~, P), the phase angle 1[1 and upon the level of in-plane T-stress T2 parallel to
the interface at the crack tip, parameterised by (He et al., 1991)

(9)

For given values of (~, P) and 1[1, Gl/G~ax decreases with increasing '1, as shown in Fig. 4.
Note that I'll increases with increasing length s of the kinked crack. Therefore, a positive
value of '1 both encourages kinking of an interfacial crack and causes the kinked crack to
grow unstably under fixed remote loading. Further, for '1 > 0, the subsequent crack tra­
jectory of the kink is expected to diverge from the interface; kink growth is directionally
unstable for '1 > 0 (Cotterell and Rice, 1980). A negative value of '1 stabilises an interfacial
crack against kinking and may cause a kinked crack to arrest. Also, for '1 < 0, crack growth
from the initial kink is expected to converge towards the interface and be directionally
stable.

Typically, the interfacial toughness 11(1[1) is observed to increase with increasing mag­
nitude of the phase angle 1[1 [see, for example, Cao and Evans (1989) ; Akisanya and Fleck
(1992)]. A representative material respOnSe.11(1[I)/1s is included in Fig. 4 for the purposes
of discussion of the practical utility of the criterion (8). Consider the curve Gl/G~ax for
'1 = 0 in Fig. 4. The 11(1[I)/1s curve crosses the GdGF curve at 1[1 ~ 40°. Thus, kinking is
predicted for 1[1 ~ 40°, but not for 1[1 < 40°. Next, consider the G1/GF curve for the case
'1 = 0.2. This curve crosses the 11(1[I)/ls response at ~ ~ 30°; we expect kinking for 1[1 ~ 30°
but not for 1[1 < 30°. So far we have discussed kinking into material 2. The case of kinking
into material I (the film) follows immediately upon replacing Is by the mode I toughness
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Fig. 4. Effect of the interfacial phase angle l/i = arctan lIm (AS"')/Re (Kt")] and the normalised T­
stress fI = T2...fs/JE*G1 upon the ratio GdG'rox. G1 is the energy release rate for the interfacial
crack, G~ox is the maximum energy release rate for the kinked crack, and s is the length of the kink.
r./rs is a representative normalised interfacial toughness response, where r s is the mode I toughness

of the substrate.

of the film rr and by changing the signs of ct, 13 and l[J. Also, in the evaluation of the
normalised T-stress Tf in eqn (9), T2 is replaced by T, for kinking into material I.

Later in this paper we shall give the interfacial crack solution for the edge crack
geometry and edge loading shown in Fig. 2(c). The crack solution is used to calculate values
of Tf and ,#, and the likelihood of kinking is then evaluated. In presenting interfacial stress
intensity solutions for the edge crack it is convenient to define a phase angle t/I in relation
to the film thickness h by

(10)

Note that t/I is related to l[J by

(lla)

and is related to l[J by

(lIb)

2.1. Condition for the existence ofa mode I kink path
The energy criterion (8) is based on the hypothesis that kinking occurs along a direction

w where the energy release rate at the tip of the kink is maximised. For most values of (ct, 13)
and of phase angle l[J, this path is almost identical to a mode I kink path (Le. Ku = 0 at the
kink tip). For an interfacial flaw to grow away from the interface and into substrate (as
shown in Fig. 3), the stress intensity factors at the tip ofthe flaw must satisfy the additional
necessary condition K1 > 0, Ku ~ O. A flaw with K1 < 0 remains closed and does not grow;
a flaw with Ku < 0 is driven back towards the interface. He et al. (1991) have evaluated the
stress intensity factors K1 and KII at the tip of a kinked flaw as a function of the flaw
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orientation w, the elastic mismatch parameters (0(, p), the phase angle 1[1, and the nonnalised
T-stress '1. Using their results we examine the effects of 1[1 and '1 upon the existence of a
mode I kink path in the film and in the substrate.

Define I[IC2 as the critical phase angle for which the stress intensity factor at the tip of
a flaw in material 2 (the substrate) with a vanishingly small orientation w = 0+ satisfies the
condition K1> 0, Ku = O. When I'll :::;; 0.8 and 1[1 = I[IC2, a single mode I kink path exists in
the substrate oriented tangentially to the interface. For I'll > 0.8 and 1[1 = I[Ic2, an additional
kink path exists at finite w such that Ku = 0 and K1 is larger than that along the w = 0
path. In the present study we restrict discussion to the simpler case I'll :::;; 0.8. (We shall
show later that for realistic residual stress distributions in the film, the magnitude of the
nonnalised T-stress '1 is less than 0.8 for most film/substrate systems.) The critical phase
angle I[Ic2 depends only upon the material elastic parameters 0( and fJ since a crack at w = 0+
or 0- is not influenced by the T-stress; typical results are given in Fig. 5 for the case fJ = O.
The figure also shows the critical phase angle for which a mode I kink path exists in material
I and lies parallel to the interface.

When 1[1 > I[IC2, a mode I kink path exists at a finite angle w in material 2 (the substrate)
and kinking into the substrate is predicted if the energy condition (8) is satisfied. For such
values of 1[1 (> I[Id now consider the possibility of kinking into material I (the film) above
the interface; Ku is positive for all flaws in material I for which K 1 > 0 and a kink in
material I propagates back to the interface.

In a similar manner define I[IC! as the critical phase angle for which the stress intensity
factors at the tip of a flaw in material I (the film) and oriented tangentially to the interface
satisfies the condition K 1 > 0, Ku = O. Then, a mode I kink path exists in material I provided
1[1 < I[Ich and kinking into material I is predicted if the energy condition is satisfied. For a
small range in 1[1 of less than 3°, a mode I path exists in both materials I and 2. We ignore
this subtlety and assume in our application of the He and Hutchinson analysis that a mode
I path exists in the substrate for 1[1 > I[IC2 and in the film for 1[1 < I[Ic2' For a given value of
(0(, fJ) and I'll :::;; 0.8, the critical phase angle I[Ic == I[IC2 marks the transition from the existence
of a mode I path in the substrate to the existence of a mode I path in the film. The effect of
phase angle 1[1 (for I'll :::;; 0.8) upon crack path selection is summarised schematically in Fig.
6, assuming that sufficient energy exists to grow in the kink.
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Fig. 5. Effect of ela~tic mismatch parameters (Qt, p) upon the critical phase angle t/ic at which a mode
I kink path (K, > 0, KII = 0) exists tangentially to the interface.
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3. STRESS INTENSITIES AND T-STRESSES FOR INTERFACIAL EDGE CRACK

The finite element method is used to analyse the plane elasticity problem shown in Fig.
2(c). An elastic film of thickness h is deposited on an elastic substrate of thickness H. Both
the film and the substrate are isotropic elastic solids, but the elastic constants of the film
(material 1) in general differ from those of the substrate (material 2). An interfacial crack
of length t exists at each edge of the film/substrate system. The origin of the rectangular
co-ordinate system (x,y) is at the left hand crack tip such that the interface is along y = 0
and the free surface of the film is along y = h.

The magnitude of the stress increases linearly from a value of (I = (I I at the interface
(y = 0) to a value of (I = (12 at the free surface of the film (y = h). Thus, the variation of
compressive normal stress (I at the edge of the film is given by

(12)

The loading shown in Fig. 2(c) is equivalent to a force per unit thickness P and a moment
per unit thickness M, acting at the mid-plane of the film (y = h/2) as shown in bold face in
Fig. 2(c). The loads P and M are given by

where

P = i'J'h (l3a)

(l3b)

and (14)

For the case of a uniform stress in the film, (II = (12 = (10 is equivalent to P = i'J'h = (loh and
M=O.

For an arbitrary combination of P and M, the stress field at the tip of the interfacial
crack oflength t from the edge is governed by the complex interfacial stress intensity factor
K and the T-stresses T1 in material 1 (the film) and T2 in material 2 (the substrate).
Dimensional considerations require that the stress intensity factor and the T-stresses are
related to the geometry and the load quantities P and M by

(15)

(16)

Film
(MaUl

Substrate
IMat. 21

Interfacial flaw
KIl>O

Film
lMat.11

~<%2 ---------~
Substrate Ku<0 Interface
(Mat. 21 Interfacial flaw

Fig. 6. Sketch showing the effect of phase angle IjJ upon crack path selection. We assume that the
mode I stress intensity factor at the flaw tip K j is positive, and that sufficient energy exists to drive

the kink.
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Here a, b, c and d are non-dimensional functions of the elastic mismatch parameters (a, P)
relative crack length t /h, and of the ratio of film to substrate thickness h/H. The parameters
a and b are complex, while c and d are real. The T-stress Tz in material 2 (substrate) is
related to the T-stress T 1 in material I (film) via eqn (6).

The elastic strain energy release rate G[ for interfacial crack growth is given by

(17)

where the subscript I denotes the interface and E* is a function of the elastic properties
defined in Section 2. By substituting for Khi

' from eqn (15) into eqn (17), G[ can be expressed
in the dimensionless form

hE*G[ _ (M) _ _ _(M)Z
----p2 = aa+ Ph (ab+ab)+bb Ph '

where the overbar denotes the complex conjugate.

(18)

4. NUMERICAL ANALYSIS

We examine by the finite element method the effect of the geometrical parameters t /h
and h/H, material parameters (a,p), and the non-dimensional loading parameter M/Ph
upon the interfacial stress intensity factor, energy release rate and the T-stresses. Unless
otherwise stated, the discussion is restricted to the case h/H = 0.01. Numerical computations
were performed for a thin film/substrate system having a length L = 100h, where h is the
thickness of the film, as shown in Fig. 2(c). Three values of the substrate thickness Hare
considered: H = 3h, IOh and 100h. The end face of the film is loaded such that the stress
variation across the thickness of the film is given by eqn (12).

Both the stress intensity factor and the interfacial T-stress are determined by:

(i) evaluating the path-independent J integral for the elastic state of interest, followed
by

(ii) evaluating the J integral for the linear superposition of the elastic state of interest
and a suitably chosen auxiliary elastic field (Kfouri, 1986; Matos et al., 1989).

Parks' (1974) virtual crack extension method is used to evaluate the path-independent J
integral. For evaluation of the components K 1 and Kz of the interfacial stress intensity
factor, the auxiliary field is taken as the singular crack tip field for an interfacial crack
(Matos et aI., 1989). In the evaluation of the T-stresses, the auxiliary elastic field consists
of a point force placed at the tip of a semi-infinite interfacial crack and in a direction
parallel to the crack faces (Kfouri, 1986). Further details are given in the Appendix.

An elastic analysis has been carried out using the finite element code MARC-K3
(MARC-CDC, 1974). The finite element mesh consists of between 600 and 1100 eight­
noded plane strain isoparametric, quadrilateral elements depending upon the relative crack
length t /h and the ratio of film to substrate thickness h/H. A typical finite element mesh is
shown in Fig. 7. Roller boundary conditions are imposed along the mid-plane of the double
edge cracked configuration, as dictated by symmetry requirements.

The coefficients a, b, c and din eqns (15) and (16) are determined by applying the two
loads P and M in turn. Results are listed in Table 1 for the material parameters a = -0.5,
0, 0.5 and P= a/4, relative crack lengths 0.1 :!i; t/h :!i; 20, and relative film to substrate
thicknesses 0.01 :!i; h/H:!i; 0.3. Results for other values of a and P(= 0 and a/4) are reported
elsewhere in Akisanya and Fleck (1993). A comparison of the results at large relative crack
lengths t/h = 20 with existing steady state solutions (Suo and Hutchinson, 1990) shows
that the results are accurate to within about 1%.
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Fig. 7. The finite element mesh.

5. RESULTS

5.1. Strain energy release rate and phase angle
The strain energy release rate G1 for the interfacial crack is given by eqn (18), and the

phase angle'" is given via eqns (10) and (IS) as

(
1m (Kh ie») (Im(aPh-I/2+bMh-3/2»)

'" = arctan = arctan .
Re(Kke

) Re(aPh- I
/
2+bMh- 3/2)

(19)

Once the calibration functions a and b have been deduced from the finite element analysis
(for any given values of tjh, hjH, tX and P), the quantities G1 and'" are known for any
prescribed loading P and M by making use of eqns (18) and (19).

Results for G1 and '" are given in Fig. 8 for the cases of a pure end load P and for a
pure moment M. Values for G1 have been normalised by the steady state value G, for a
single, semi-infinite interfacial crack between a thin film and an infinitely thick substrate
(hjH ~ 0), as found by Suo and Hutchinson (1990). For pure end loading P, G, is given
by G, = P 2 j2£Ih, while for a pure moment M the steady state energy release rate isG, = 6M2j£lh3

• Interfacial toughness data are commonly presented in the G.'" plane.
Thus it is instructive to present our results by taking G1jG, and'" as axes in Fig. 8. Each
curve is for a prescribed (tX, P) value, and is a trajectory for t jh in the range of 0.1 to 20. To
within the numerical accuracy of the calculations (about 1% error), a steady state has been
achieved for'" by the stage tjh = 3, and a steady state has been achieved for G1 by the stage
tjh = 20.



Table I. Tabulated solution for the coefficients ° = OR +i 0" b = bR+i b" c and d: (a) 0( = -0.5, P= 0(/4; (b) 0( = 0, p = 0; (c) 0( = 0.5; P= 0(/4

(a) h/H
c d OR 0. bR b.

t/h 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33

0.1 -0.363 -0.378 -0.394 1.076 0.997 0.960 0.320 0.323 0.307 0.359 0.355 0.263 1.956 1.960 1.290 -1.154 -1.165 -1.238
0.3 -0.303 -0.321 -0.335 1.253 1.202 1.185 0.354 0.357 0.313 0.498 0.491 0.380 2.427 2.429 2.019 -1.625 -1.631 -1.338
0.5 -0.258 -0.278 -0.306 1.266 1.173 1.164 0.383 0.387 0.324 0.552 0.550 0.419 2.444 2.454 2.086 -1.717 -1.734 -1.895
0.8 -0.215 -0.238 -0.267 1.219 1.130 1.115 0.413 0.417 0.423 0.589 0.587 0.442 2.436 2.451 2.154 -1.742 -1.756 -2.004
1.0 -0.195 -0.213 -0.239 1.203 1.118 1.111 0.427 0.433 0.374 0.604 0.607 0.476 2.431 2.451 2.223 -1.749 -1.767 -2.114
3.0 -0.122 -0.150 -0.229 1.164 1.076 1.083 0.471 0.470 0.377 0.656 0.652 0.478 2.421 2.448 2.265 -1.768 -1.787 -1.856
6.0 -0.096 -0.140 -0.229 1.158 1.070 1.084 0.486 0.474 0.378 0.675 0.659 0.479 2.419 2.450 2.284 -1.772 -1.791 -1.974

10.0 -0.083 -0.140 -0.227 1.157 1.074 1.076 0.493 0.475 0.379 0.684 0.658 0.484 2.418 2.447 2.303 -1.773 -1.786 -1.982
15.0 -0.077 -0.139 -0.227 1.156 1.069 1.084 0.496 0.474 0.380 0.689 0.689 0.480 2.418 2.447 2.374 -1.773 -1.789 -1.985

~20.0 -0.073 -0.139 -0.226 1.156 1.069 1.077 0.498 0.474 0.380 0.691 0.659 0.483 2.418 2.446 2.374 -1.773 -1.790 -2.017
'"

(b) h/H ~
0

c d OR 0. bR b. ~t/h 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 e:
OQ

0.1 -0.582 -0.585 -0.569 2.179 2.028 2.041 0.108 0.110 0.096 0.183 0.176 0.131 1.694 1.708 1.690 -1.022 -1.007 -1.168 I»

0.3 -0.548 -0.550 -0.534 2.556 2.478 2.417 0.182 0.182 0.142 0.287 0.274 0.230 1.929 1.936 1.908 - i,355 -1.352 -1.768 =-"'-
0.5 -0.498 -0.510 -0.502 2.598 2.429 2.461 0.226 0.227 0.180 0.334 0.327 0.256 1.924 1.914 1.915 -1.418 -1.439 -1.439 "'-

'"0.8 -0.441 -0.457 -0.503 2.530 2.360 2.332 0.268 0.267 0.190 0.374 0.366 0.318 1.913 1.913 1.857 -1.444 -1.458 -1.443 8
1.0 -0.412 -0.431 -0.454 2.507 2.336 2.328 0.288 0.288 0.198 0.392 0.389 0.305 1.908 1.934 1.692 -1.452 -1.470 -1.489 =-'"3.0 -0.292 -0.335 -0.440 2.447 2.271 2.289 0.358 0.343 0.203 0.466 0.448 0.309 1.892 1.902 1.690 -1.478 -1.504 -1.568 S·
6.0 -0.241 -0.318 -0.440 2.436 2.258 2.288 0.386 0.350 0.203 0.499 0.459 0.311 1.888 1.913 1.690 -1.484 -1.505 -1.578 =-

0
10.0 -0.216 -0.318 -0.440 2.432 2.260 2.285 0.399 0.350 0.203 0.516 0.459 0.312 1.887 1.915 1.688 -1.486 1.503 -1.580 ..."

15.0 -0.201 -0.316 -0.439 2.431 2.248 2.278 0.407 0.350 0.204 0.525 0.460 0.316 1.886 1.919 1.729 -1.487 -1.508 -1.608 ~
20.0 -0.193 -0.318 -0.438 2.431 2.261 2.277 0.411 0.350 0.205 0.530 0.460 0.318 1.886 1.909 1.720 -1.487 -1.514 -1.610 =>

§"
'"(c) h/H

c d OR 0. bR b.
t/h 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33 0.01 0.10 0.33

0.1 -0.748 -0.714 -0.591 3.528 3.323 3.529 -0.006 -0.005 -0.018 0.096 0.088 0.063 1.283 1.265 1.382 -0.826 -0.850 -1.010
0.3 -0.758 -0.796 -0.595 3.998 3.934 3.997 0.051 0.051 0.025 0.143 0.131 0.093 1.390 1.386 1.457 -0.973 -0.946 -1.068
0.5 -0.728 -0.700 -0.579 4.063 3.841 3.966 0.086 0.086 0.044 0.170 0.162 0.121 1.390 1.372 1.483 -0.997 -1.013 -1.073
0.8 -0.683 -0.660 -0.660 4.005 3.786 3.815 0.120 0.117 0.058 0.197 0.186 0.152 1.387 1.394 1.422 -1.012 -1.020 -1.096
1.0 -0.658 -0.663 -0.640 3.987 3.749 3.789 0.137 0.135 0.069 0.211 0.204 0.151 1.383 1.405 1.381 -1.017 -1.038 -1.126
3.0 -0.537 -0.576 -0.630 3.934 3.679 3.729 0.207 0.182 0.070 0.281 0.253 0.154 1.373 1.387 1.349 -1.038 -1.066 -1.164
6.0 -0.472 -0.560 -0.630 3.921 3.661 3.716 0.240 0.188 0.071 0.319 0.262 0.157 1.369 1.394 1.355 -1.044 -1.071 -1.197

10.0 -0.434 -0.563 -0.635 3.917 3.674 3.724 0.258 0.189 0.073 0.342 0.262 0.157 1.367 1.379 1.317 -1.047 -1.067 -1.244
15.0 -0.410 -0.560 -0.637 3.913 3.652 3.670 0.269 0.188 0.073 0.356 0.263 0.158 1.366 1.388 1.349 -1.048 -1.069 -1.250 <.>
20.0 -0.397 -0.562 -0.639 3.913 3.661 3.722 0.275 0.188 0.073 0.364 0.263 0.159 1.366 1.387 1.347 -1.049 -1.068 -1.258 ;;

lh
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Fig. 8. The effect of the elastic mismatch parameters (iX, (3) and relative crack length (/h upon the
normalised energy release rate GdGr and the phase angle

[
1m (Kh")]if! = arctan --- .
Re(Kh")

Loading is a pure end load P for (a) p=0 and (b) p iX/4 and a pure end moment M for (c) {3 =0
and (d) (3 = iX/4. Note that Gf' = P 2/(2E,h) in (a) and (b), and Gf' = 6M2/(t j h3

) in (c) and (d),
where E, = E,/(I-vI) is the plane strain modulus of the film. The asymptotic values for Gj/Gf' and

'" at t/h = 00 are given by Suo and Hutchinson (1990).

It is clear from Figs 8(a-d) that the dominant effect of increasing t/h from zero is to
increase GdG'(' from zero to the steady state value, with little attendant change in ljJ. This
suggests that interfacial crack growth is unstable under fixed remote loading. For all values
of (IX, P), the phase angle ljJ asymptotes to a steady state value in the range 40° to 60° for
pure end loading P, and to a value in the range -450 to -250 for a pure end moment M.
Clearly, under combined loading P and M, a wide range of values is achievable for ljJ. The
effect of the material mismatch parameter Pupon the values of G1/G'(' and ljJ is minor.

5.2. Interfacial stress intensity factor
The components of the interfacial stress intensity factor defined by eqn (15) can be

expressed in non-dimensional form as

Re(Khit
) M

---'----'- = a +b -
Ph- 1/2 R R Ph

1m (Kh it
) M

--'------'- - a +b ­Ph - Ij2 - I I Ph ' (lOb)
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Fig. 8(b). Continued.

where aR and aI are the real and imaginary parts of the complex coefficient a; similarly, bR

and bI are the real and imaginary parts of the complex coefficient b.
Figure 9 displays the critical value of the non-dimensional loading ratio MjPh at which

the opening component of the stress intensity factor [i.e. Re (KhW
)] vanishes, for a given

crack length tjh. When MjPh exceeds the critical value, crack growth is possible; when
MjPh is less than the critical value, the crack tip is closed and no crack growth is expected.
Figure 9 also shows that for sufficiently negative values ofMjPh and for sufficiently negative
values of IX, a crack of length tjh < 1 is stable under fixed remote load; the opening com­
ponent of the stress intensity factor decreases to zero as the crack advances. For sufficiently
positive values of MjPh, the crack tip remains open for all values of crack length.

As an example consider a film under a uniform compressive edge load such that
MjPh = O. For the case IX = fJ = 0 (Le. homogeneous solid), the crack tip is open for all
values of tjh. For IX = 0.8 and fJ = IXj4, the crack tip is closed for tjh < 0.3, and crack
growth is inhibited. Thus, Fig. 9 serves as a design guide for the domain of safe residual
stress distribution in the film such that crack growth is not possible, for any assumed value
of interfacial crack length.

5.3. The interfacial T-stress
Figure to shows the normalised T-stresses T1hjP and T1h2jM in material I (i.e. the

film) due to the loading P and M, respectively, as a function of the relative crack length
t jh. The corresponding normalised T-stresses T2hjP and T2h2jMin material 2 (the substrate)
are obtained via eqn (6). Although T1 and T2 have the same sign, the absolute value of T2

is higher than the absolute value of T1 when IX < 0, and is lower than the absolute value of
T1 when IX > O. We observe that T1hjP due to load P is negative while T1h2jM due to Mis
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Figs 8(c) and (d). Continued.

positive for all values of the material parameters (IX, f3) and relative crack length t/h
considered. There is an appreciable increase in T\h/P in the interval 0 < t/h < 6 until a
steady state is attained at t/h > 6; T1h2/M shows a small local maximum at t/h ~ 0.5, and
attains a steady state at t /h > I. The effect of the f3-value on the T-stress due to either P or
M is negligible.

The normalised T-stress '1 == (T2~)/JE*GI for kinking into the substrate (material
2) has been evaluated for an assumed relative flaw size s/h and for a range of values of
M/Ph. Recall that a positive value of the normalised T-stress '1 encourages the kinking of
an interfacial crack. The variation off/with crack length is shown in Fig. II(a) for the case
IX =:0 P= 0 and s/h = 0.01 ; '1 increases with the normalised interfacial crack length t/h until



The edge cracking and decohesion of thin films

~ =a/4. h/H =0.01

0.00

M

Ph

-0.10

-0.20

3189

Re(Khi&)<O (no crock growth)

100.1
1
h

Fig. 9. The non-dimensional loading parameter M/Ph at which Re(Khi
') = 0, plotted as a function

of relative crack length t/h and the elastic mismatch parameters lX and P(= lX/4).

steady state is attained, and also increases with increasing M/Ph. The critical value of M/Ph
at which " = 0 is shown in Fig. 11(b) as a function of the non-dimensional crack length
t/h, for rx in the range -0.8 to 0.8 (with P= rx/4). It is clear from Fig. 11(b) that for
sufficiently large and positive values of M/Ph, " is positive for all values of t/h. The effect

h/H=0.01

h/H =0.01

a=-0.8

t
h

a=0.8----..- .............

0.2
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Fig. 10. The effect of relative crack length tlh and elastic mismatch parameters (lX, P) upon the
normalised T-stress in the film, due to (a) a pure end load P and (b) a pure end moment M. The

filled symbols refer to P= 0, and the open symbols refer to p= lX/4.

SAS 31:23-8
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Fig. 11. (a) The nonnalised T-stress f/ = TzJ'i/JE'"Gj as a function of relative crack length t/h
and loading parameter M/Ph, for ex = fJ = 0, s/h = 0.01 and h/H = om. (b) The non-dimensional
loading parameter M/Ph at which the T-stress T1 = Tz = 0, plotted as a function of relative crack

length t /h and elastic mismatch parameters ex and fJ( = ex/4).

of the elastic mismatch parameters (iX, p) on the critical value of M/Ph at which" changes
sign is only minor for values of t/h ~ 1, as shown in Fig. ll(b).

The absolute value of the loading parameter M/Ph L1a/6lt) is less than unity for
most thin film/substrate systems of technological importance. The corresponding value of
1,,1 is less than 0.8 except when t /h is small and M /Ph is large and negative [see, for example,
Fig. 11(a)]. Most thin film/substrate systems have M/Ph values in the range 0 ~ M/Ph ~ 1.
Therefore, the assumption that 1,,1 ~ 0.8 can be made for most thin film/substrate systems.

5.4. Selection ofkink path: into the substrate or film?
An interfacial edge crack can grow along one of three different paths depending upon

the loading condition and the relative value of the ratios r1frs and r1frr. Here r l is the
mode-dependent toughness of the interface, and r sand r f are the mode I toughnesses of
the substrate and film, respectively. The three possible paths are:

(i) continued growth along the interface ;
(ii) kinking into the substrate;

(iii) kinking into the film, which may result in spalling of the film.

Kinking into the substrate (or into the film) depends upon the existence of a mode I kink
path in the substrate (or in the film) and upon satisfying the energy condition (8), as
discussed in Section 2. The existence of a mode I kink path depends only upon the phase
angle t{J when the magnitude of the normalised T-stress" [defined in eqn (9)] is less than
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Fig. 12. Effect of the relative crack length tlh upon the critical value of the loading parameter
(MIPh)c at which kinking switches from the substrate to the film, for a film/substrate thickness ratio
hlH = om and a relative flaw size sjh = 0.01. MjPh = (MjPh\ when I/J = I/Jc. The filled symbols

refer to p= 0, and the open symbols refer to P= rx/4.

0.8. Note that the actual direction ofthe mode I path is dependent on both ~ and '1. Recall
that a mode I path exists in the substrate when the phase angle ~ ~ ~c; the critical phase
angle ~c is shown in Fig. 5. The corresponding critical phase angle l{tc is given by eqn (lla).

We assume that kinking of the interfacial crack into the substrate occurs when l{t(a, p,
t/h, h/H, M/Ph) ~ l{tc(a, p, s/h), provided the energy condition (8) is satisfied. We take the
equality l{t(a,p, t/h, h/H, M/Ph) = l{tc(a,p, s/h) in order to deduce the critical value of the
ratio of bending to axial compressive load (M/Ph)c at which kinking switches from the
substrate to the film. The results are plotted in Fig. 12, for h/H = om, s/h = om, and for
various values ofa (with p= 0 and p= a/4). The results plotted in Fig. 12 give a qualitative
prediction of crack path for a given thin film/substrate system as discussed below.

For a loading parameter M/Ph < (M/Ph)c there is, at least, one flaw orientation in the
substrate for which Kn ~ 0 and K I > 0; the crack kinks into the substrate and grows away
from the interface if the values of l{t and '1 are such that the energy criterion (8) is satisfied.
Similarly, when M/Ph > (M/Ph)c, there is, at least, one flaw orientation in the film for
which Ku ~ 0 and KI > O.

It is evident from the above discussion that the onset of kinking of a crack at the
interface of a given film/substrate system into the substrate or into the film is strongly
affected by the values of l{t and the normalised T-stress '1. To predict the onset of kinking,
the following strategy is adopted. Consider a thin film/substrate system as shown in Fig.
2(c). We assume the mode dependence of the interfacial toughness rI(l{t) and the value of
the loading parameter M/Ph are known. The present analysis provides the values for phase
angle l{t, critical loading parameter (M/Ph)c and for the normalised T-stress '1, based on
estimates of initial relative interfacial crack length t/h and flaw size s/h. The calculated
values of l{t and '1 are used to determine GI/G'Sax using the analysis presented by He et al.
(1991) (see, for example, Fig. 4). Sufficient energy is available for kinking when eqn (8) is
satisfied. (For kinking into the film substitute r s = r f into eqn (8), T1 = T2 into eqn (9),
and the signs of a, p and l{t in eqn (8) are reversed.) Kinking into the substrate is predicted
if the non-dimensional loading M/Ph < (M/Ph)c, and kinking into the film occurs if
M/Ph> (M/PhL for assumed values of t/h and s/h.

5.5. Effect offilm/substrate thickness ratio upon interfacial cracking response
The effect of the film/substrate thickness ratio h/H upon the interfacial energy release

rate GI and the phase angle l{t due to pure end load P, is shown in Fig. B(a); Fig. 13(b)
shows the response due to a pure end moment M. The interfacial energy release rate G1 is
again normalised by the energy release rate Gf' for a semi-infinite interfacial crack between
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a thin film and an infinitely thick substrate (h/H ~ 0). The results shown in Figs 13(a) and
13(b) are for a film/substrate combination with material parameters IX = 0.5 and fJ = a./4;
the effect of h/H upon the G1/Gj versus ljJ response for other values of IX and fJ are
qualitatively similar to that shown in Figs 13(a) and 13(b).
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Fig. 13. Effect of thickness ratio hlR upon the normalised energy release rate G,IGr and the phase
angle'" == arctan [1m (K1t')/Re(K1t')] due to (a) a pure end load P and (b) a pure end moment M,
and upon the normalised T-stress in the film due to (c) a pure end load P and to (d) a pure end
moment M. In all cases ex == 0.5, fJ .. ex{4. Note that Gr == P 2/(2E,h) in (a) and Gr == 6M2{(E1h

3
)

in (b), where E, == E./(I-vD is the plane strain modulus of the film. The asymptotic values for
GJGr and'" at llh == 00 are given by Suo and Hutchinson (1990).
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For a pure end load P and for t/h ~ 1, the phase angle'" increases slightly with
increasing values of h/H [Fig. 13(a)], while for pure end moment M and t/h ~ 1, the phase
angle decreases with increasing values of h/H. The value of the normalised energy release
rate GI/Gf' due to pure end load P decreases significantly, while that due to pure end
moment M increases with increasing values of h/H. For example, for IX = 0.5, P= IX/4 and
t/h = 10, the value of GI/Gf' due to a pure end load P decreases by 80%, while that due to
a pure end moment M increases by 10%, as h/H is increased from 0.1 to 0.33.

The effect of the film/substrate thickness ratio h/H upon the normalised T-stress in the
film is shown in Fig. 13(c) for a pure end load P, and is shown in Fig. 13(d) for a pure end
moment M, for IX = 0.5 and P= IX/4. For all values of h/H considered, the normalised T­
stress in the film due to P is negative, while that due to M is positive, for all values of t/h
in the range 0.1 ~ t/h ~ 20. The absolute value of T.h/P for t/h ~ 1 increases slightly with
increasing values of h/H [Fig. 13(c)]. The effect of h/H on the T-stress due to a pure end
moment M is small [see Fig. 13(d)].

6. CRACK PATH SELECTION MAP

The various criteria for the selection of crack paths discussed in the previous sections
can be summarised in the form of a crack path selection map, which also serves as a design
guide. The three possible paths for growth of an interfacial crack between a thin film and
a substrate are:

(i) continued growth along the interface ;
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(ii) kinking into the film;
(iii) kinking into the substrate.

Interfacial crack growth occurs if the interfacial toughness is much smaller than the tough­
ness of the adjacent materials and if the interfacial crack tip is open. Kinking into the
substrate (or into the film) occurs if the energy condition (8) is satisfied and a mode I path
exists in the substrate (or in the film). Recall that a mode I path exists in the substrate if
the interfacial phase angle ljJ > ljJc, and in the film ifljJ < ljJc, where ljJ = ljJc is the phase angle
at which a mode I path exists tangentially to the interface. The growth of a kinked crack
into the substrate (or into the film) is directionally unstable if the T-stress at the interfacial
crack tip is positive and directionally stable if the T-stress is negative; a negative T-stress
may also cause a kinked crack to arrest.

A range of expected behaviours is shown in the crack path selection maps of Fig. 14.
We take M/Ph and t/h as axes and representative values for (IX, P), s/h and h/H. Recall that
no growth is predicted if Re (Khie

) < 0 for the interfacial crack. A mode I kink path exists
in the substrate if ljJ > ljJc and a mode I path exists in the film if ljJ < ljJc' It is emphasised
that kinking will occur only if sufficient energy exists to drive the kink [i.e. if eqn (8) is
satisfied]. The kink is directionally stable if Yf < 0, and is directionally unstable if Yf > O.
Thus, the following crack paths are predicted:

(a) no interfacial crack growth (Re (Khie
) < 0);

(b) directionally stable kinking into the substrate (ljJ > ljJc and Yf < 0);
(c) directionally unstable kinking into the substrate (ljJ > ljJc and Yf > 0);
(d) directionally stable kinking into the film (ljJ < ljJc and Yf < 0);
(e) directionally unstable kinking into the film (ljJ < ljJc and Yf > 0).

These regimes ofbehaviour are shown in Fig. l4(a) for IX = -0.5, in Fig. l4(b) for IX = 0, and
in Fig. l4(c) for IX = 0.5; in each case pis taken to equallX/4. There is some rearrangement of
the relative dominance of the regimes of behaviour; the Yf = 0 line moves down while the
ljJ = ljJc line moves up with increasing IX. In all cases, no interfacial crack growth is predicted
for all t/h provided M/Ph < -0.2, and directionally unstable kinking into the film is
predicted for M/Ph > 1.

7. CASE STUDY

Thouless et al. (1987) have investigated the cracking and spalling processes that
accompany the edge loading of PMMA and glass plates. A precrack was introduced at the
edge of the plate at a depth h from the free surface; the initial length of the precrack t ::::: h.
The plate was subjected to various values of the loading parameter M/Ph. Initial growth
of the edge crack was found to be unstable under fixed loading. (This is consistent with the
results plotted in Fig. 8.) In addition, the initial kinking behaviour of the edge crack
depended upon the value of the loading parameter M/Ph.

Since the plate is homogeneous, IX and pvanish. We shall compare the predictions of
the present study with the experimental observations of Thouless et al. (1987). Consider
two of the loading parameters reported by Thouless et al. (1987); M/Ph = 0.16 and
M/Ph = 0.35. First, take the case M/Ph = 0.16. From Fig. 12, we find that M/Ph = 0.16 is
less than (M/Ph)c for all values of t/h > 0.1 ; kinking into the substrate is therefore predicted
subject to the energy condition of eqn (8). For IX = P= 0 we have r I = r s = r f • Kinking
into the substrate occurs when G1/Gr;ax ~ 1 [eqn (8)]; this condition is satisfied for all values
of t/h by the following argument. The curve of G1/Gr;ax for IX = P= 0 indicates that
G1/Gr;ax ~ 1 for all values of the phase angle ljJ ;;?; -400 (He et al., 1991). The results plotted
in Figs 8(a) and 8(c) show that ljJ is positive for all values of t/h when M/Ph = 0.16. We
conclude that the energy condition (8) is satisfied for kinking of the crack into the substrate,
for all values of t/h. Note that a divergent crack path away from the original crack
orientation depends upon the normalised T-stress Yf being positive. The crack path selection
map of Fig. l4(b) shows that the original crack path is directionally stable for M /Ph = 0.16
and t/h = 1. As the crack length increases under a constant value of M/Ph, the mode of
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failure changes from directionally stable crack growth to directionally unstable kinking
into the substrate; the transition occurs at t = l.lh [see Fig. 14(b)]. This is reasonably
consistent with the observed crack length of t = 1.5h at which unstable kinking into the
substrate occurs.

For an initial relative crack length of t/h = 1 and a loading parameter M/Ph = 0.35,
the results plotted in Fig. 14(b) predict directionally unstable kinking into the film from the
onset of crack growth, provided there is enough energy to drive the kink. From the results
plotted in Figs 8(a) and 8(c), the phase angle t/J for M/Ph = 0.35 increases from a value of
t/J = _140 at t/h = 0.1 to a value of t/J ::::: 10 at t/h = 20, giving G1/Grgax « 1 and the energy
criterion (8) is satisfied. Thus, directionally unstable kinking into the film is predicted for
all values of t/h. This is in agreement with the observed crack path; the crack with an initial
length of t = h kinked into the film as soon as it began to grow (Thouless et al., 1987).

8. CONCLUDING DISCUSSION

In this paper an analysis has been presented of the edge cracking and kinking behaviour
encountered in many thin film/substrate systems. The stress distribution in the film is
decomposed into force and moment components, and the interfacial stress intensity factor
and the non-singular crack tip T-stresses are evaluated.

An interfacial crack may continue to grow along the interface or kink into either of
the adjoining materials. Kinking of the interfacial crack depends upon satisfaction of the
energy condition stated in eqn (8) and upon the existence of a mode I path in the material
containing the kink. For given values of material parameters 0( and p, a critical value of the
loading parameter M/Ph exists below which a mode I path (Kn = 0, K1 > 0) exists in the
substrate and kinking into the substrate may occur (assuming the substrate is sufficiently
brittle). Conversely, kinking into the film may occur (assuming there is sufficient energy to
drive the kink) if the loading parameter M/Ph is greater than the critical value. The critical
value of the loading parameter (M/Ph)c is shown in Fig. 12.

The energy release rate for the interfacial edge crack increases with crack extension;
the crack is unstable under a fixed load. This contrasts with the case of a debond which
initiates from a through-cut in the film; then the interfacial energy release rate decreases
with increasing crack length t/h resulting in a stable interfacial crack growth (Beuth, 1992;
Akisanya, 1992).
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APPENDIX

INTERACTION ENERGY METHOD FOR THE EVALUATION OF THE INTERFACIAL STRESS
INTENSITY FACTOR AND THE T-STRESSES

In this Appendix we describe the method used to evaluate the interfacial stress intensity factor K and the T­
stresses T, and T2 for the thin film/substrate geometry shown in Fig. 2.

Consider a bimaterial specimen containing a traction-free interfacial crack, subjected to a generalised remote
load F, as shown in Fig. AI. We assume that plane strain conditions apply. For the interfacial crack shown in
Fig. 2(c), the remote loads P and M are represented by the generalised load F. Let (x, y) and (r,9) be rectangular
and polar co-ordinates centred at the crack tip, respectively. We describe below a procedure to evaluate the
interfacial stress intensity factor K and the T-stresses due to the load F. The procedure follows from the work of
Matos et al. (1989) and Kfouri (1986).

The stress field around the crack tip in material m (m = I, 2) due to a remote load F is of the form

j,k= 1,2, (AI)

where K = K, +iK2 (i =F) is the complex interfacial stress intensity factor due to F, 9jk(9, s) is a non­
dimensional function of angle 9 and of oscillatory index s, Tm is the T-stress in material number m, and lJjk is the
Kronecker delta symbol. The full form of the non-dimensional function 9jk is listed, for example, by Rice et al.
(1989). Let the strain and the displacement fields due to F in material m be t;k and uj', respectively.

The path-independent J integral for the elastic body is defined by (Rice, 1968)

(A2)

where C is any contour from the bottom crack surface to the top surface (see Fig. AI), nj is the outward normal
to C, and G( is the interfacial energy release rate. Denote the value of J due to the remote load F by J(F).

Consider next an auxiliary field (ult, Sjt, ut) for the same geometry due to a remote load P. Let the value of
J associated with the auxiliary field be J(F"'). When the displacement fields uj and ut are summed (and the
associated strain fields and stress fields are summed), the value of J for the resulting field J(F, F"') is given by

J(F,F"') = J(F)+J(F"')+Jin"

where J,n! is the interaction integral between the two fields and is given by

(A3)

Mat.1

Mat.2

F"

n

Fig. A I. A cracked bimaterial solid subjected to a generalised extemalload F. The curves C and C,
are arbitrary contours starting from the lower crack surface to the top surface.
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(A4)

By suitable choice of the auxiliary field, the integral Jint can be expressed in terms of either the interfacial stress
intensity factor or the T-stresses, as discussed below.

Evaluation of the interfacial stress intensity factor
Consider as the auxiliary field the singular crack tip field for an interfacial crack. Let the components of the

interfacial stress intensity factor associated with this auxiliary field be denoted by K1 and Kz. We are interested in
evaluating the components K~ and Kt of the interfacial stress intensity factor due to the representative remote
load F. From eqns (5) and (A3), superposition of the two fields gives

(A5)

Here E* == (1 +0:)/(1- fJ2)£2 is a function of the elastic properties of the materials. It is evident from eqn (A5)
that the value ofJint (evaluated by contour integration) can be used to determine the stress intensity factor for the
loading state F, by choosing the auxiliary ( )* field to be a K, field and then a K2field in tum.

In order to compute K1 and K2, first solve the elastic problem for the remote loading Fusing the finite element
method and obtain J = J(F) via eqn (A2), using Parks' (1974) virtual crack extension method. Then obtain the
nodal displacements {AuJ for a problem with the same geometry and for which K~ is finite and Kt = O. This set
of displacements is needed only for the distorted ring of elements during virtual crack extension, and is taken as
the asymptotic crack tip displacements for an interfacial crack; the details of the field are listed in Matos et al.
(1989). Add {AuJ to the finite element displacement solution {uj } for the elastic state of interest, and evaluate
J = J(F,F*) of the resulting field. The difference between J(F, F*) and the initial J(F) is

(A6)

and thus

(A7)

The process is repeated by adding to the finite element solution {Uj} the asymptotic interfacial crack tip dis­
placements for which K~ = 0 and Kt is finite, to obtain

(A8)

The advantage of this method is its widespread applicability; it can be used for problems with complex loadings
and complex crack geometries.

Evaluation ofthe T-stresses
For evaluation of the T-stress, we choose as the auxiliary field the crack tip field due to a point force in a

direction parallel to the interface and located at the crack tip. Consider a point force Px (per unit thickness)
parallel to the crack surface and applied to the interfacial crack tip of the same geometry (shown by the arrow in
Fig. AI). When both materials I and 2 are semi-infinite in extent, the stresses in both materials due to the point
force Px at the crack tip are given by

(A9)

(AIO)

and the associated displacements are

Px [(r) 9sinO ](U:)I = (1+0:)'/t£1 -In d cos8- 2(I+v
l
)

Px [(r) 8sin8 ](u*h = (1-0:)- -In - cos8----
r '/t£2 d 2(1 +V2)

Px {[ 1+2v} (r)J' OCOSO}
(un = (1+0:)'/t£1 2(I+vl)+ln d sm9- 2(I+v,)

(All)

(AI2)

(Al3)
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2 (')J . 8cos8 }(uth =(I-cx)nE
2

2(I+v2)+ln d sm8- 2(I+V2)'
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(AI4)

where the subscripts 1 and 2 denote the material number, d is an arbitrary normalising distance, and E and v are
the Young's modulus and the Poisson's ratio, respectively. We note that the stress and displacement fields due to
a point force Px at the tip of a semi-infinite interfacial crack are independent of the material parameter p. When
ex = p = 0, the stresses and the displacements due to P" given by eqns (A9)-(AI4), reduce to the familiar
Boussinesq solution [see, for example, Timoshenko and Goodier (1970)].

The auxiliary field due to the point force Px at the crack tip is added to the near tip field due to F. The J
integral J(F, P,) of the resulting field is obtained by evaluation of eqn (A2) over a circular boundary C1 centred
at the crack tip (see Fig. AI), giving

(AI5)

Here K 1 and K2 are the components of the complex interfacial stress intensity factor K due to F, which have
already been determined by the method described above; K 1* and K! are the components of the interfacial stress
intensity factor due to P" and J(Px ) is the value of J when only the point force P, is applied at the crack tip of
the geometry. The strain exx is given by

(AI6)

The fields given by eqns (A9)-(AI4) correspond to a strain energy density singularity of the type ,-2. Hence
J(Px ) = 0 and the interfacial stress intensity factor due to P, vanishes. Thus, eqn (AI5) reduces to

J(F,P,) = J(F)+e"P,. (AI7)

We implement the above method for estimating the T-stresses T1 and T2 for the finite body as follows. First,
the J integral J(F) and the interfacial stress intensity factor K due to F are determined using the method of Matos
et al. (1989). Using the field due to a point force P, (= I) at the tip of an interfacial crack between two semi­
infinite solids [eqns (A9)-(A14)], the displacements are evaluated at all nodes within a ring ofelements surrounding
the crack tip. The nodal positions of this ring of elements are deformed during virtual crack extension. The J
integral J(Px ) and Kr and K! due to Px (= I) are then evaluated. The displacements due to Fare added to those
due to Px at the nodes ofthe elements to be deformed, and the Jintegral of the resulting field J(F, Px ) is evaluated
by Parks' virtual crack extension method (Parks, 1974). The evaluated values of J(PJ, K,* and K2* (all due to PJ
do not vanish due to numerical discretization of the integrals. Thus, we substitute the evaluated values of J(P,),
K1* and K2* into eqns (AI5) and (AI6) in order to evaluate T 1 and T2 •


